semiautomatic image retrieval using the high level semantic labels
نویسندگان
چکیده
content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. the challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. hence, in this paper, an image retrieval system is introduced that provided two kind of query presenting, query by keyword and query by sample image. the proposed system, after the first result retrieval, does an interactive retrieval process semantically based on user's relevance feedbacks and related high level semantic labels to the images semi-automatically. this system can reply different requests in the image retrieval domain based on a hierarchical semantic network and doing a kind of learning process by the feedbacks given by user. according to experiments, the proposed approach concludes acceptable accuracy for retrieval results
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملImage Retrieval Using Dynamic Weighting of Compressed High Level Features Framework with LER Matrix
In this article, a fabulous method for database retrieval is proposed. The multi-resolution modified wavelet transform for each of image is computed and the standard deviation and average are utilized as the textural features. Then, the proposed modified bit-based color histogram and edge detectors were utilized to define the high level features. A feedback-based dynamic weighting of shap...
متن کاملSemantic Video Retrieval Using High Level Context
Video retrieval – searching and retrieving videos relevant to a user defined query – is one of the most popular topics in both real life applications and multimedia research. This thesis employs concepts from Natural Language Understanding in solving the video retrieval problem. Our main contribution is the utilization of the semantic word similarity measures for video retrieval through the tra...
متن کاملAlgorithms of High-Level Semantic-Based Image Retrieval
IPSM is an integrated probabilistic image semantic description multi-level model. This model includes input layer, feature layer, semantic layer, synthetical probability layer, probability propagation layer, and semantic mapping layer. Based on the model and characterizing of the image high-level semantic content according to Bayesian theory, SHM (semantic high-level retrieval algorithm) and SR...
متن کاملUsing High-Level Semantic Features in Video Retrieval
Extraction and utilization of high-level semantic features are critical for more effective video retrieval. However, the performance of video retrieval hasn’t benefited much despite of the advances in high-level feature extraction. To make good use of high-level semantic features in video retrieval, we present a method called pointwise mutual information weighted scheme(PMIWS). The method makes...
متن کاملMining Pixels: Weakly Supervised Semantic Segmentation Using Image Labels
We consider the task of learning a classifier for semantic segmentation using weak supervision, in this case, image labels specifying the objects within the image. Our method uses deep convolutional neural networks (CNNs) and adopts an Expectation-Maximization (EM) based approach maintaining the uncertainty on pixel labels. We focus on the following three crucial aspects of the EM based approac...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
journal of computer and roboticsجلد ۱، شماره ۱، صفحات ۰-۰
کلمات کلیدی
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023